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Abstract
We examine the dynamics of a network of genes focusing on a periodic
chain of genes, of arbitrary length. We show that within a given class of
sigmoı̈ds representing the equilibrium probability of the binding of the RNA
polymerase to the core promoter, the system possesses a single stable fixed
point. By slightly modifying the sigmoı̈d, introducing ‘stiffer’ forms, we show
that it is possible to find network configurations exhibiting bistable behaviour.
Our results do not depend crucially on the length of the chain considered:
calculations with finite chains lead to similar results. However, a realistic
study of regulatory genetic networks would require the consideration of more
complex topologies and interactions.

PACS numbers: 03.70.+k, 11.10.Gh, 03.65.Sq, 11.30.Ly
Mathematics Subject Classification: 34D99, 92D10, 92B05

1. Introduction

Living organisms respond to external signals thanks to a large variety of genetically precoded
responses. This is achieved through networks of genes of high connectivity and complexity.
The interaction of genes aims at regulating each others’ activity and thus leads to the desired
response [1, 2]. Typically a gene is subject to the regulatory effect of a few other genes which
can act on it in either an activating or a suppressing way, depending on the situation. The
predominant focus of many experimental and theoretical studies on genetic circuits thus far
has been on the combinatorial control of transcriptional initiation, which to a large extent
determines the connectivity of the network [3, 4]. It is thus of the utmost importance to study,
and understand, the dynamics of the gene regulatory network.

The activity of a gene is regulated by other genes through the production of transcription
factor (TF) proteins. Physically, this is accomplished through the interaction of these
transcription factor proteins with the RNA polymerase complex in the regulatory region
of the gene. The code segment of the DNA chain (that is the gene) is read by the RNA
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polymerase which binds to DNA and moves along activated by transcription factor proteins
and gives rise to the RNA messenger. This transports the respective code to the ribosomal
machine and proteins are produced according to it. Among these proteins we also have, of
course, constituents of the transcription factor.

In order to build a mathematical model of this process, one must first describe the
binding of the RNA polymerase molecule to the DNA promoter, namely a region which is the
beginning of the encoded string. In a thermodynamical description [5], the promoter activity is
proportional to the equilibrium probability g of the binding of the RNA polymerase to the core
promoter. In the case of the simplest processes, namely simple activation or suppression, the
dependence of g on the cellular TF concentrations (which we shall denote by p) is described
by the Arrhenius form [6]

g(p) = 1 + ωp/KA

1 + p/KA

for activation (1.1)

and

g(p) = 1

1 + p/KR

+ L for suppression, (1.2)

where KA and KR are the dissociation constants between p and the respective DNA sequence,
ω is the Boltzmann weight of the interaction between the RNA polymerase and L is the
promoter leakage. Both expressions have a sigmoı̈dal form and can be written simply (up to
a rescaling of p) as

g(p) = α + βp

1 + p
, (1.3)

where α < β for activation and α > β for suppression.
From these basic ingredients, we can write the dynamical equations for one gene. Two

steps can be distinguished. First the RNA polymerase produces RNA-messenger acid (m)

dm

dt
= g(p) − λm. (1.4a)

Next, the RNA-messenger acid goes to a ribosomal machine and TF proteins are produced
with a linear rate (which is just a simplifying assumption at this stage)

dp

dt
= νm − κp. (1.4b)

Since the kinetics of RNA messenger production are rapid compared to those of the TF
proteins, it is not unreasonable to make a steady-state assumption for the reaction leading to
their production, and thus we have m = g(p)/λ. We can then rewrite equation (1.4b) as

dp

dt
= g(p) − p, (1.5)

where the two parameters have been absorbed into a rescaling of time and a redefinition of the
parameters α and β entering the sigmoı̈d. Equation (1.5) possesses one fixed point. Indeed
the equation p0 = g(p0) has a single positive fixed point. The condition for stability of this
fixed point is g′(p0) < 1 and it can be easily verified that it is satisfied by the form of g given
by (1.3).

The above considerations form the basis for the construction of the description of a
network comprising an arbitrary number of genes in interaction, which we shall present in the
following section. In particular, we shall study a genetic network and examine the possibility
of existence of a fixed point for the production of TF proteins. As we shall show, when the
equilibrium probability g of the binding of the RNA polymerase to the core promoter is given
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by a sigmoı̈d (1.3) a single stable fixed point exists in our networks. However, by slightly
modifying the form of the sigmoı̈dal function, we show that there exist situations where the
system possesses two stable fixed points and thus exhibits bistability.

Why the bistability is important from the biological point of view? First, cellular
regulation is usually achieved through a very complex network of interactions and processes.
These networks involve tens of thousands of biochemical reactions. It is, therefore, very
important to find procedures of simplifying the description of these networks to facilitate the
analysis. One is thus led to the concept of motif [10] which represents some basic subnetwork
classifiable on the basis of function, architecture dynamics, etc. At a bigger scale, the motifs
can be seen as organized in modules having their specific role. Accordingly, in this approach,
the bistability can be seen as a switching motif with a digital-like on/off behaviour. This
may be at the level of gene expression, as function of the concentration of transcription
factors. Switching behaviour of this type were seen in cascades’ ultrasensitivity arising in
mitogen-activated protein kynase cascades [13], multi-input cascades found in glycolysis [14],
etc.

Second, multistability is useful in the study of storing cellular memory by complex gene
and protein networks. For instance in yeast, galactose-signalling network multiple-nested
feedback loops create many discrete stable states of network activity. Certain loops can reduce
strongly the randomly switching back and forth between expression states [11] preserving thus
the cellular memory by reducing stochastic transitions.

Of course the complexity of network, presence of noise, and interaction with other
molecular structures can affect strongly the dynamics and thus are very important [12], but
our model singles out a certain aspect of the dynamics, namely the bistability for different
promoter activities for a linear gene network.

2. A model of a genetic circuit

In this section we shall consider a chain of genes where each gene is in interaction with two
others, the effect of which can be either activating or suppressing. From the one-gene model
we presented in the introduction, we can write the dynamical equations as

p′
n = g(pn+1) + g(pn−1) − pn, (2.1)

where g(p) is given by equation (1.3). The chain under consideration is subject to periodic
boundary conditions, but its length is a priori arbitrary. (The analysis of finite-length chains
has shown that the conclusions concerning fixed points and stability stay qualitatively the same
as in the case of an arbitrary-length chain, only the quantitative details do change).

We rewrite (2.1) introducing the variable transformation

w = 1

1 + p
(2.2)

which means that g(p) = (α − β)w + β and find

w′
n = (β − α)w2

n(wn+1 + wn−1) + wn − (1 + 2β)w2
n. (2.3)

It is straightforward to absorb one of the parameters of (2.3) by the adequate scaling of the
dependent variable. We define

u = (1 + 2β)w (2.4)

and obtain

u′
n = δu2

n(un+1 + un−1) + un − u2
n, (2.5)
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where δ = (β − α)/(1 + 2β). We can readily remark that an activating coupling corresponds
to δ > 0, while the opposite sign indicates a suppressing situation. Given that the physical
values of p are positive, equation (2.2) implies 0 < w < 1 and thus from (2.4) we have
0 < u < 1 + 2β.

At this stage it is interesting to look for the general stationary solution of (2.5). Putting
u′ = 0, we find

un+1 + un−1 = 1

δ

(
1 − 1

un

)
. (2.6)

This relation can be considered as a mapping for un and it turns out that it can indeed be
solved. It is a special case of the QRT family of mappings, proposed by Quispel, Roberts
and Thompson in [7]. The latter is a family of second-order mappings which contain five
parameters. They are integrable and possess an invariant which can be expressed as a ratio of
two polynomials biquadratic in un and un−1. The solution of the general QRT mapping is just
a sampling of an elliptic function on a lattice of equally spaced points. While this solution
is interesting mathematically, it is not of particular use in our case since we concentrate on
strictly positive definite solutions. Moreover, such solutions are very sensitive to the precise
length of the chain, something which is undesirable in the model at hand. We are thus led
to the investigation of simpler stationary solutions, which do exist, of course. The obvious
one is a constant u independent of n. From (2.6), it is clear that if δ < 1/8 a constant
solution u = u0 with positive u0 does exist for (2.5) (a single one when δ is negative, but two
such solutions for positive δ). We have also looked for positive, spatially periodic, stationary
solutions of (2.5) of low periodicity, but none was found. If we consider solutions with
period 2, i.e. un = u and un+1 = v, it turns out that the two possible solutions for u are
precisely the two solutions obtained for the constant solution u = u0 and moreover, we find
that we have v = u. For period 3, we find exactly the same situation (provided we discard the
spurious, non-positive definite solutions), i.e. only the constant solution survives. The same
holds for period 4 solutions which, given the structure of the mapping, are just a copy of the
period 2 solutions.

The model of equation (2.5) assumes that both genes which interact with the one under
consideration have the same action. The case where the two genes have opposite actions
can be treated along similar lines. Moreover, a self-activation (or self-suppression) can be
introduced. It suffices to add a term ±un in the parentheses. Thus, the general equation for
the genetic network we shall consider is

u′
n = δu2

n(un+1 + un−1 + εun) + un − u2
n, (2.7)

where ε can be 0 or ±1 depending on the self-interaction. The constant, stationary solution
of (2.7) is given by

(2 + ε)δu2
0 − u0 + 1 = 0. (2.8)

When the coefficient of the u2
0 term is negative only one positive root exists, otherwise we

have two positive roots provided δ < 1/(8 + 4ε).
We now turn to the investigation of the stability of the positive solutions. We start by

linearizing (2.7) around the solution u = u0 and then we look for a solution of the linearized
equation in the form eikn+λt (compatible with periodicity assumption). We find that the
eigenvalue λ is given by

λ = δu2
0(f (k) + ε) + 2δu2

0(2 + ε) + 1 − 2u0, (2.9)

where f (k) = 2 cos k in the case of cooperative interaction. Using condition (2.8) for the
fixed point, we can rewrite (2.9) as

λ = f (k) + ε

2 + ε
(u0 − 1) − 1, (2.10)
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where again f (k) = 2 cos k and we consider the most unfavourable case namely cos k = 1.
We thus obtain

λ = u0 − 2 (2.11)

and the stability condition λ < 0 becomes simply

u0 < 2. (2.12)

Thus the fixed point u = u0 is stable provided the constraint (2.12) is satisfied. When a single
positive solution exists we have one stable equilibrium. However, there exist situations where
(2.8) has two positive solutions. It would seem a priori that it could be possible in this case to
have two stable fixed points. This turns out not to be the case. Indeed if we have two positive
solutions of (2.8), u0 and u1, and assume that u0 < 2 and u1 < 2, we find immediately that
1
u0

+ 1
u1

> 1. However from (2.8) we have u0 + u1 = u0u1 and thus 1
u0

+ 1
u1

= 1. This is in
contradiction with the existence of two stable points. Thus in this particular model, we have
studied in this section no bistability is possible.

3. A generalized linear genetic chain

In the previous section we have analysed a network of genes in interaction and have shown
that there exists a single stable steady state. The natural question that can be asked at this point
is whether one can obtain a network of genes that will behave as a switch, by possessing two
stable steady states [8, 9]. It turns out that this is possible and can be easily realized provided
one generalizes slightly expression (1.3) which gives the dependence of the probability that
the RNA polymerase binds to the core promoter on the cellular TF concentration. As we
have mentioned at the beginning this is related to the simplest activation or suppression. If,
for instance there are two operators for the activator then the promoter activity is given by a
different expression which is effectively equivalent with a stiffer sigmoı̈d [6]. For the general
case, we can consider the following expression for the promoter activity:

2g(p) = α + βpν

1 + pν
with ν > 1. (3.1)

The case ν = 1 has been analysed in the previous section where it was shown that bistability is
impossible. In the case ν �= 1, we shall concentrate on here, it is not interesting to perform any
transformation of the dependent variable and thus we shall deal directly with the dynamical
equation

p′
n = g(pn+1) + g(pn−1) − pn. (3.2)

The constant fixed points for (3.2) are given by the solutions of the equation

2g(p0) − p0 = 0. (3.3)

Given the form of g(p) it is clear that in the case of suppressing interaction only one fixed
point exists and thus no bistability is possible. On the other hand, for activating interactions,
β > α, we may have three fixed points and thus a possibility of bistability. Pursuing the study
of this latter case, we expand (3.2) around the fixed point, p = p0 +χ and obtain the linearized
equation for χ

χ ′
n = g′(p0)(χn+1 + χn−1) − χn. (3.4)

We seek a solution of the form eikn+λt which leads to the equation for λ

λ = 2g′(p0) cos k − 1. (3.5)
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Figure 1. Bistability domain in the (α, β) plane for various values of ν.

Thus the stability condition, in the worst-case scenario cos k = 1, is

2g′(p0) − 1 < 0. (3.6)

In order to transcribe the stability domain, we combine (3.3) with 2g′(p0) − 1 = 0, i.e. (3.6)
with equal sign. This leads to the following expressions for the parameters α and β in terms
of p0:

β = p0

(
1 +

1 + pν
0

νpν
0

)
(3.7a)

α = p0

(
1 − 1 + pν

0

ν

)
. (3.7b)

The form of the (bi)stability domain in the (α, β) plane can easily be obtained from (3.7).
First, from (3.7b) we see that the maximal-allowed value of p0 is given by pν

0 = ν−1 in which
case α = 0 and β = p0ν/(ν − 1). The form of the frontier has a cusp at the point where α

and β have a maximum and a minimum, respectively. This occurs when pν
0 = (ν − 1)/(ν + 1)

and the corresponding values are α = p0(ν − 1)/(ν + 1) and β = p0(ν + 1)/(ν − 1). The
upper border of the stability domain has the asymptotic form βαν−1 = (ν − 1)(ν−1)/νν . (One
can easily obtain this form by assuming p to be small in (3.7) and keeping only the dominant
terms.) In figure 1, we represent graphically the bistability domain for various values of ν.

The typical behaviour of the system is the following. Suppose that we start with a fixed
α and increase β continuously. When we are in the region below the bistability domain we
have a single solution of (3.3), which is stable, i.e. satisfies (3.6). The same occurs when we
exit the bistability domain for large values of β. In the intermediate region, delimited by the
two lines, there exists three fixed points. It turns out that the ‘middle’ fixed point is always
unstable, i.e. it violates (3.6). The two other fixed points, on the contrary, do always satisfy
these inequalities and thus we are indeed in a bistable situation. It is clear that as ν → ∞,
the bistability domain expands and covers the whole domain β > 1 and 0 < α < 1 when the
sigmoı̈d becomes a step function. Still this is compatible with the fact that the middle root of
equation (3.3) is always unstable. Indeed when g(p) is a step function, with a discontinuity
at p = 1, the three fixed points are α, 1, β. While for p0 = α or β we have g′(p0) = 0, and
thus a stable situation, g′(p) is a delta function centred at 1, δ(p − 1), and thus the stability
condition is violated.
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It is easy to extend the above analysis to the case where we have an activating self-
interaction. While the quantitative details may change, the overall conclusions on the existence
of a bistability region still hold.

4. Conclusion

In this paper we have examined a network of genes in interactions. More precisely, we have
analysed the regulatory effect on the RNA polymerase binding (which results to a specific
protein production) of the TF proteins produced by other genes. We have constructed a
dynamical system which models such an interacting chain and analysed its behaviour under
various assumptions concerning the dependence of binding on the TF concentration. We have
shown that in a fairly general setting there exists a domain of the parameters for which the
system exhibits bistability, possessing two distinct stable steady states. While our results were
derived in a specific frame, namely that of a periodic chain of arbitrary length, calculations
on short finite chains of genes lead to similar results. Of course regulatory genetic networks
have complex topology and interactions which go beyond the scope of the present paper. In
this sense, this study is inspired from the dynamics of gene networks rather than an exact
model thereof. Still the possibility of bistability is a most interesting feature which warrants
experimental study.

In a future work we expect to come back to the question of stability of genetic networks
in order to investigate, among others, the effect of nonstationarity of the RNA messenger
production.
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